Жоспар
1. Комбинаторикалы ұғымы
2. Дискреттік математика
3. Комбинаториканың негізгі формулалары
4. Геометриялық ықтималдық. Ықтималдықтар теориясының
аксиомалық негіздері жайында
5. Дискреттік кездейсоқ шамалардың үлестірім заңдары
6. Дискреттік кездейсоқ шаманың математикалық күтімі
7. Дискреттік кездейсоқ шамалардың дисперсиясы және орта
квадраттық ауытқу
Комбинаторикалы ұғымы
Комбинаторика (лат. Combino – жалғастырамын) - комбинаторикалық анализ деп те аталады.
Комбинаторикалық анализ комбинаторикалық математика, комбинаторика – математиканың кез келген шектеулі жиын (шектеудің кейбір шарттарын шексіз жиын) бөліктерінің орналастырылуы мен өзара орналасуына байланысты мәселелерін зерттейтін бөлімі.
Комбинаторикалық сипаттағы идеялар ықтималдық теориясы, алгебра тәрізді математикалық бөлімдерінде өте кең тараған. Комбинаторикалық анализ есептері ерте кезден – ақ белгілі болған. Оның дамуына көптеген математиктер елеулі үлес қосты. Бірақ комбинаторикалық анализ өз алдына пән ретінде тек 20 ғасырда ғана қалыптаса бастады. Комбиторикалық графтар теориясы, шектеулі автоматтар теориясы тәрізді математиканың салаларымен тығыз байланысты. Оның тәжірибелері ғылыми тәжірибелерді жоспарлауды және оларға талдау жасауда, сызықтық және динамикалық бағдарламалауда, математикалық экономикада, т.б. ғылым мен техникалық көптеген салаларында қолданылады. Комбинаторикалық анализ проблемасының үш түрі бар.
Санап шығу есептерінде объектілердің шектеулі жиынынды кездесетін шарттарды қанағаттандыратын орналастырулар саны қарастырады. Іс жүзінде мұндай есептер жасаушы функциялар әдісі мен Д.Пойаның (1887-1985) (американдық математик) санап шығу әдісінің көмегімен шешіледі.
Салу есептерінде кейбір қасиеттері сақталатын шектеулі жиын бөліктері конфигурациясының болуы, егер болса оның салынатындығы туралы мәселелер қарастырылады. Таңдап алу есептерінде ішкі жиын бөліктерінің кейбір құрамын таңдап алу шарттары зерттеледі.мұндай есептерді шешкенде комбинаторлық ойлармен қатар алгебралық аппарат та қолданылады.
Дискреттік математика – математиканың дискретті құрылымдардың қасиеттернін зерттейтін саласы. Мұндай құрылымдарға шектеулі топтар , шектеулі графтар , сондай-ақ, ақпаратты түрлендіргіш кейбір математикалық модельдер шектеулі автоматтар, Тьюринг машинасы, т.б. жатады. Бұлар шектеулі сипаты бар құрылымдар болып есептеледі. Дискретті математиканың шектеулі құрылымдарды зерттейтін бөлігін шектеулі математика деп атайды. Дискреттік математикада, жоғарыда аталған шектеулі құрылымдармен бірге , кейбір алгебралық жүйелер, шексіз графтар , белгілі бір түрлері есептеу сұлбалары, т.б. зерттеледі. «Дискреттік математика» және «шектеулі математика» ұғымдарының синонимі ретінде кейде «дискреттік талдау» термині қолданылады.
|